Package: NeuralNetTools 1.5.3

NeuralNetTools: Visualization and Analysis Tools for Neural Networks

Visualization and analysis tools to aid in the interpretation of neural network models. Functions are available for plotting, quantifying variable importance, conducting a sensitivity analysis, and obtaining a simple list of model weights.

Authors:Marcus W. Beck [aut, cre]

NeuralNetTools_1.5.3.tar.gz
NeuralNetTools_1.5.3.zip(r-4.5)NeuralNetTools_1.5.3.zip(r-4.4)NeuralNetTools_1.5.3.zip(r-4.3)
NeuralNetTools_1.5.3.tgz(r-4.4-any)NeuralNetTools_1.5.3.tgz(r-4.3-any)
NeuralNetTools_1.5.3.tar.gz(r-4.5-noble)NeuralNetTools_1.5.3.tar.gz(r-4.4-noble)
NeuralNetTools_1.5.3.tgz(r-4.4-emscripten)NeuralNetTools_1.5.3.tgz(r-4.3-emscripten)
NeuralNetTools.pdf |NeuralNetTools.html
NeuralNetTools/json (API)

# Install 'NeuralNetTools' in R:
install.packages('NeuralNetTools', repos = c('https://fawda123.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fawda123/neuralnettools/issues

Datasets:
  • neuraldat - Simulated dataset for function examples

On CRAN:

9.79 score 72 stars 6 packages 524 scripts 4.6k downloads 4 mentions 8 exports 40 dependencies

Last updated 3 years agofrom:4fd777d025. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 25 2024
R-4.5-winOKDec 25 2024
R-4.5-linuxOKDec 25 2024
R-4.4-winOKDec 25 2024
R-4.4-macOKDec 25 2024
R-4.3-winOKDec 25 2024
R-4.3-macOKDec 25 2024

Exports:garsonlekgrpslekprofileneuralskipsneuralweightsoldenplotnetpred_sens

Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigplyrpurrrR6RColorBrewerRcppreshape2rlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Overview

Rendered fromOverview.Rmdusingknitr::rmarkdownon Dec 25 2024.

Last update: 2022-01-06
Started: 2022-01-06

Readme and manuals

Help Manual

Help pageTopics
Plot connection weights for bias linesbias_lines
Plot bias pointsbias_points
Variable importance using Garson's algorithmgarson garson.default garson.mlp garson.nn garson.nnet garson.numeric garson.train
Get y locations for layers in 'plotnet'get_ys
Plot connection weightslayer_lines
Plot neural network nodeslayer_points
Create optional barplot for 'lekprofile' groupslekgrps
Sensitivity analysis using Lek's profile methodlekprofile lekprofile.default lekprofile.mlp lekprofile.nn lekprofile.nnet lekprofile.train
Simulated dataset for function examplesneuraldat
Get weights for the skip layer in a neural networkneuralskips neuralskips.nnet
Get weights for a neural networkneuralweights neuralweights.mlp neuralweights.nn neuralweights.nnet neuralweights.numeric
Variable importance using connection weightsolden olden.default olden.mlp olden.nn olden.nnet olden.numeric olden.train
Plot a neural network modelplotnet plotnet.default plotnet.mlp plotnet.nn plotnet.nnet plotnet.numeric plotnet.train
Predicted values for Lek profile methodpred_sens