Package: WtRegDO 1.0.2

WtRegDO: Implement Weighted Regression on Dissolved Oxygen Time Series

A sample dataset and functions to implement weighted regression on dissolved oxygen time series are included as a simple example to reduce the effects of tidal advection. Functions are also available to estimate net ecosystem metabolism using the open-water method.

Authors:Marcus W. Beck [aut, cre]

WtRegDO_1.0.2.tar.gz
WtRegDO_1.0.2.zip(r-4.5)WtRegDO_1.0.2.zip(r-4.4)WtRegDO_1.0.2.zip(r-4.3)
WtRegDO_1.0.2.tgz(r-4.4-any)WtRegDO_1.0.2.tgz(r-4.3-any)
WtRegDO_1.0.2.tar.gz(r-4.5-noble)WtRegDO_1.0.2.tar.gz(r-4.4-noble)
WtRegDO_1.0.2.tgz(r-4.4-emscripten)WtRegDO_1.0.2.tgz(r-4.3-emscripten)
WtRegDO.pdf |WtRegDO.html
WtRegDO/json (API)

# Install 'WtRegDO' in R:
install.packages('WtRegDO', repos = c('https://fawda123.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/fawda123/wtregdo/issues

Datasets:
  • SAPDC - Sample dataset for weighted regression
  • metab_dtd - Ecosystem metabolism for SAPDC from detided DO
  • metab_obs - Ecosystem metabolism for SAPDC from observed DO
  • sfbay - San Francisco Bay water quality data
  • wtreg_res - Results from weighted regression with the SAPDC dataset

On CRAN:

detidingmetabolismweighted-regression

3.51 score 5 stars 43 scripts 15 exports 48 dependencies

Last updated 6 months agofrom:4ea340e1e1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:climmeansecometabevalcorf_calcKLf_calcWanninkhofmet_day_funmetevalobjfunoxySchmidtoxySolsmootherwinoptwtfunwtobjfunwtreg

Dependencies:clicodetoolscolorspacecpp11data.tabledplyrfansifarverforeachgenericsggplot2gluegswgtableisobanditeratorslabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmeocepillarpkgconfigplyrpurrrR6RColorBrewerRcppreshape2rlangscalesstringistringrsuncalctibbletidyrtidyselecttimechangeutf8vctrsviridisLitewithr